Recent Talks

List of all the talks in the archive, sorted by date.


6Dls7o4wPTc-thumbnail
Monday March 16, 2009
Mr. Jorge Pérez Prieto
Instituto de Astrofísica de Canarias, Spain

Abstract


aCF0YXSletE-thumbnail
Monday March 16, 2009
Mr. Jorge Pérez Prieto
Instituto de Astrofísica de Canarias, Spain

Abstract


-jFsbvSod9U-thumbnail
Thursday March 12, 2009
Dr. Nick Scoville
California Institute of Technology, USA

Abstract

The COSMOS survey is the largest high redshift galaxy evolution survey ever done -- imaging 2 square degrees with all major space-based and ground based observatories. I will describe the key data in the survey and then present recent results on large-scale structures, the dark matter distributions and galaxy evolution.

SINyUh7tSZs-thumbnail
Wednesday March 11, 2009
Dr. Jordi Cepa
Instituto de Astrofísica de Canarias, Spain

Abstract

The standard scientific operations of the instrument OSIRIS will start at the GTC by mid March. The first tests of the instrument once mounted on the telescope are now finished and during this talk we will show the results of the instrument characterization and final performance. We will present the plans for the future commissioning of the remaining observing modes as well as the next implementations expected for OSIRIS.


4bmopFGLpCs-thumbnail
Thursday February 26, 2009
Dr. Ángel de Vicente
Instituto de Astrofísica de Canarias, Spain

Abstract

If you do any amount of programming, you have certainly found that at some point during its development your code did not work as expected. Perhaps it simply crashed and told you that a core dump was created; perhaps it always gave you an "incorrect" result or perhaps it just behaved "oddly" given some input combinations. In any case, you were face to face with a "bug". And what did you do to correct your code? If the answer was to put "printf"s around the code and run it again, you should attend this talk in which we'll see an introduction on how to debug your programs with a debugger. The debugger (available for most programming languages) is a really easy-to-use tool that lets you run your application in a special mode, so that you can run it step by step, or stop at certain points, inspect variables, etc., which is a great aid to find what is wrong with your code without the need of changing its source.

-thumbnail
Thursday February 19, 2009
Prof. Carlos Frenk
Institute for Computational Cosmology, Physics Dept, Durham University

Abstract

The standard model of cosmology -- the ``Lambda cold dark matter'' model -- is based on the idea that the dark matter is a collisionless elementary particle, probably a supersymmetric particle. This model (which mostly dates back to an early workshop in Santa Barbara in the 1980s) has been famously verified by observations of the cosmic microwave background radiation and the large-scale distribution of galaxies. However, the model has yet to be tested conclusively on the small scales appropriate to most astronomical objects, such as galaxies and clusters. I will review our current understanding of the distribution of dark matter on small scales which derives largely from large cosmological N-body simulations and I will discuss prospects for detecting dark matter, either through its gravitational effect on galaxies and clusters or, more directly, through gamma-ray annihilation radiation.

5HFVpHieCQU-thumbnail
Tuesday February 10, 2009
Dr. Valentín Martínez Pillet
Instituto de Astrofísica de Canarias, Spain

Abstract

El instrumento IMaX ha sido entregado al proyecto SUNRISE, un telescopio solar de 1 m de diámetro que volará este verano desde el polo norte en un globo LDB de NASA. En este coloquio veréis como ha sido el proceso de integración del instrumento español IMaX y cual es el status del proyecto SUNRISE que involucra a tres países: EEUU, Alemania y España con la participación del IAC, IAA (Granada), INTA (Madrid), GACE (Valencia) y la UPM (Madrid).


FSmyZ2ubbBQ-thumbnail
Friday January 30, 2009
Dr. Saku Tsuneta
National Astronomical Observatory, Japan

Abstract

The magnetic landscape of the polar region (Tsuneta et al, 2008) is characterized by vertical kilogauss patches with super-equipartition field strength, a coherence in polarity, lifetimes of 5-15 hr, and ubiquitous weaker transient horizontal fields (Lites et al 2008, Ishikawa & Tsuneta, 2008, 2009). Polar region in 2007 have abundant vertical fields much stronger than the quiet Sun. Unipolar appearance and disappearance of the kG vertical patches must be closely related to properties of the horizontal flow field in the polar region. Difference and similarity between the quiet sun and the polar region are summarized, and its implication for solar dynamo will be discussed. All the open field lines forming the polar coronal hole essentially originate from such magnetic patches, and the fast solar wind would emanate from these vertical flux tubes seen in the photosphere. We conjecture that vertical flux tubes with large expansion around the photospheric-coronal boundary serve as efficient chimneys for Alfven waves that accelerate the solar wind. Indeed, we discovered propagating Alfven waves (kink mode) with magneto-acoustic waves (sausage mode) in the solar photosphere with period of 4-13 minutes with Hinode spectro-polarimeter (Fujimura and Tsuneta, 2009). We found that these fluctuations are superposition of ascending and descending Alfven waves with almost equal intensities from the analysis of the phase relationship between transverse magnetic and velocity fluctuations. Aflven waves along flux tubes in the quiet sun appear to be efficiently reflected back probably at photosphere-corona boundary. It would be very interesting to measure possible change in the reflectivity of Alfven waves depending on the magnetic environment.


2uX1nL5kwN8-thumbnail
Thursday January 29, 2009
Dr. Christopher Watson
University of Belfast, Northern Ireland

Abstract

SuperWASP is the UK's leading extra-solar planet detection program, having detected 22 of the 52 transiting planets known to date. This stems from the instruments ability to image ~500 square degrees every 60sec down to 16th mag (equivalent to the whole visible sky every 20 minutes). Recent experiments have shown that the data from SuperWASP can be reduced with 1 min of it being obtained and with further software development we will be able to identify transient sources within minutes of their observation. Detailed analysis of SuperWASP-N data has shown many populations of transient objects, including rapidly variable objects, which seem to correspond to extremely faint objects in the Sloan survey. Spectroscopy of these objects has proved challenging.

f9IF_44YCe8-thumbnail
Wednesday January 28, 2009
Dr. Francesco Sylos Labini
Institute for Complex Systems, CNR, Italy

Abstract

The Sloan Digital Sky Survey is currently the largest spectroscopic survey of extragalactic objects and one of the most ambitious observational programs ever undertaken in astronomy, measuring about 1 million redshifts and thus providing a three dimensional mapping of the local universe up to a depth of several hundreds of Mpc. The main characteristic of galaxy distribution in this survey, and in the Two degree Field Galaxy redshift Survey completed few years ago, is that large scale structures have been found to extend to scales of the order of hundreds of mega parsecs. However the standard determination of a characteristic length scale, statistically describing galaxy correlations, is of only few mega parsecs: the standard explanation of this apparent mismatch is that large scale structures have small amplitude relative to the average density. We show that, in the newest galaxy samples, large scale structures are quite typical and correspond to large fluctuation in the galaxy density field, making the standard interpretation untenable. We show that the standard statistical analysis is affected by systematics which are due to inconsistent assumptions. We point out that standard theoretical models of structure formation are unable to explain the existence of the large fluctuations in the galaxy density field detected in these samples. This conclusion is reached in two ways: by considering the scale, determined by a linear perturbation analysis of a self-gravitating fluid, below which large fluctuations are expected in standard models and through the determination of statistical properties of mock galaxy catalogs generated from cosmological N-body simulations. Finally we discuss the implications of this results in relation to recent attempts to describe inhomogeneous models in general relativity and to the recent discoveries of large scale coherent bulk flows.


Upcoming talks

No talks scheduled for the next days.

Recent Colloquia


Recent Talks