Found 132 talks archived in Stars

g9QNeWRFVQQ-thumbnail
Friday September 11, 2009
Dr. Ignacio Negueruela Díez
University of Alicante, Spain

Abstract

The last decade has brought the discovery of a large number of massive (M > 10000 M?) young open clusters in the Milky Way, which had previously not been thought to exist. I will present a brief review of these discoveries, with strong emphasis on the use of these clusters as astrophysical laboratories. I will also present the very recent discovery of a number of massive clusters concentrated towards a small region of the Scutum Arm, providing evidence for the existence of starburst activity on a much larger scale than previously assumed.


yurbrCurWwc-thumbnail
Thursday September 3, 2009
Dr. Sergio Simón
Instituto de Astrofísica de Canarias, Spain

Abstract

The Orion star forming region is an ideal laboratory for many astrophysical studies. In this talk I will present a study of the chemical composition of early B-type stars in the Orion OB1 association. The main ideas I will talk about are: (1) The importance of self-consistent spectroscopic techniques for the abundance analysis in this type of stellar objects; (2) the study of the homogeneity of abundances in stars from the various stellar subgroups in OriOB1; (3) the comparison of O stellar abundances with recent Solar determinations; (4) the comparison of stellar abundances with those resulting from the analysis of the emission line spectra of the Orion nebula (M42); (5) the study of the oxygen depletion onto dust grains in the Orion nebula. La región de formación estelar de Orión es una laboratorio perfecto para muchos tipos de estudios en astrofísica. En esta charla me centraré en el estudio de abundancias de las estrellas de tipo B temprano presentes en la asociación OriOB1. Las principales ideas que presentaré son: (1) La importancia de los análisis espectroscópicos detallados en la determinación de abundancias en estrellas de tipo B temprano; (2) el estudio de la homogeneidad química de los distintos subgrupos estelares que componen OriOB1; (3) la comparación de la abundancias estelares de oxígeno con determinaciones recientes en el Sol; (4) La comparación de abundancias estelares con aquellas obtenidas a partir de análisis del espectro de M42, la nebulosa de Orion; (5) el estudio de la depleción de oxígeno en granos de polvo en la nebulosa de Orión.

EOUiIahaB2c-thumbnail
Tuesday June 23, 2009
Prof. Rafael Guzmán
University of Florida, USA

Abstract

In the local universe, galaxies fall into one of two populations: a star-forming blue cloud and a red sequence lacking star formation. At redshift z ~ 1.5, however, the red sequence has yet to develop. Over the past 9 Gyrs some process has quenched star formation in blue galaxies and caused them to evolve onto the red sequence by fading and/or merging of their stellar populations. While such a transformation may be occurring across the full range of masses, the highest rate of evolution occurs in massive starbursts at the luminous end of the blue cloud. These galaxies are the Luminous Compact Blue Galaxies (LCBGs). In this talk I present preliminary results of a comprehensive multiwavelength survey of LCBGs from z ~ 0 to z ~ 3 we will be carrying out over the next 5 years using several space and ground-based observatories, including the GTC.


CLPbJc9-Re8-thumbnail
Friday May 22, 2009
Dr. Christina C. Thöne
Osservatorio Astronomico di Brera (OAB), Italy

Abstract

Long gamma-ray bursts are supposed to be connected to the death of very massive stars. Due to their brightness, we can detect them to much larger distances than supernovae. Using them as powerful lightsources, they allow us to study star-forming high redshift galaxies and their interstellar medium in great detail with medium and high resolution spectroscopy. Despite the large redshift ranged spanned by GRBs, there is surprisingly little evolution in the properties of their host galaxies which might indicate that GRBs can only occur under certain conditions. This can be investigated from a few bursts at very low redshifts where we can resolve their host galaxies e.g. with integral field spectroscopy. The immediate surroundings might allow us some conclusions on the progenitors of GRBs.


zeKgCk9dh60-thumbnail
Tuesday April 28, 2009
Dr. Lilián de Fátima Domínguez Palmero
Instituto de Astrofísica de Canarias, Spain

Abstract

In this work we have tried to verify what types of bulges are the descendants and the precursors of the bulges with blue colors observed at intermediate z. These may be the result of intense star formation in the central regions of the disks, related to the phenomenon of pseudo-bulges in the local universe or, alternatively, they may result from rejuvenation processes of old and red classical bulges, formed at high z, perhaps through secular evolution produced by internal or external agents. We can identify and distinguish between these processes analyzing the central surface brightness of the galaxies, μ0. For the general bulge population in the local universe, color is strongly correlated with surface density, in the sense that redder bulges are denser. Classical bulges and pseudo-bulges occupy different regions in a color-μ0 diagram. We have studied the redshift evolution of the relation between the colors and the central surface brightness for samples of spiral galaxy bulges selected from HST/ACS GOODS-N survey, and have analysed the ability of color-μ0 diagram to segregate different types of bulges at z ~ 1. The results show that, up to z ~ 0.8, galaxy nuclear and global colors are strongly correlated with the central surface brightness and, therefore, with the central surface density, in the sense that denser bulges are redder. This suggests that these formed the bulk of their stars at earlier epochs than less dense bulges. For z > 0.8, we find an important fraction of galaxies with high central surface brightness and nuclear colors much bluer than the rest of the galaxy, which probably corresponds to episodes of strong nuclear star formation that may result in the growth of the bulges inside the disks. From simple evolution models we can infer that these nuclei with star formation evolve towards the formation/growth of moderate central surface brightness, intermediate color z ~ 0 pseudobulges rather than classical bulges. These models also argue against rejuvenation processes for z ~ 1 dense and old bulges.


U11lNhJFZaE-thumbnail
Monday November 17, 2008
Dr. Lee Spitler
Swinburne University, Australia

Abstract

In the Λ-CDM galaxy formation paradigm, the star formation history of a galaxy is coupled to the total mass of its dark matter halo through processes like galaxy-galaxy merging, satellite accretion, and gas retention. Globular cluster formation is known to coincide with strong star formation events in the early Universe. To develop an accurate model of galaxy formation, the relationship between such systems and their hosting dark matter halos must be understood. Employing weak gravitational lensing galaxy mass analysis, we have discovered that the number of globular clusters in a given galaxy is directly proportional to its total dark matter halo mass. This result holds in both dwarf and giant ellipticals, spirals and in all types of galaxy environments. I will present these observations and initiate a discussion on the implications for scenarios of globular cluster system formation and evolution.


fSyW95kInJM-thumbnail
Wednesday November 5, 2008
Dr. Jorick Vink
Armagh Observatory, Northern Ireland

Abstract

Radiation-driven mass loss largely determines the life expectancy of massive stars. I will present our most recent mass-loss predictions for massive stars, which are obtained from Monte-Carlo multi-line radiative transfer calculations. I will show how these predictions are expected to change as a function of metallicity (and redshift!) and confront the results against data from the VLT FLAMES large programme of massive stars. Finally, I discuss some of the more intricate aspects of the physics of radiation-driven outflows, emphasizing the relevance for the rotational evolution of massive stars into the Luminous Blue Variable phase. This is shown to lead to some rather unexpected results... in particular for the progenitors of supernovae and gamma-ray bursts -- calling for some major paradigm shifts of even our most basic framework of massive star evolution.

3sCMMBZEBf8-thumbnail
Thursday October 30, 2008
Prof. Edward Guinan
Villanova University, USA

Abstract

Red Dwarf (dM) stars are the most numerous stars in our Galaxy. These faint, cool, long-lived, and low mass stars make up > 80% of all stars in the Universe. Determining the number of red dwarfs with planets and assessing planetary habitability (a planet’s potential to develop and sustain life) are critically important because such studies would indicate how common life is in the universe. Our program - "Living with a Red Dwarf" addresses these questions by investigating the long-term nuclear evolution and magnetic-dynamo coronal and chromospheric X-ray to Ultraviolet properties of red dwarf stars with widely different ages. The major focus of the program is to study the magnetic-dynamo generated X-ray-Ultraviolet emissions and flare properties of red dwarf stars from youth to old age. Emphasized are how the stellar X-UV emissions, flares & winds affect hosted planets and impact their habitability. We have developed age-rotation-activity relations and also are constructing irradiance tables (X-UV fluxes) that can be used to model the effects of X-UV radiation on planetary atmospheres and on possible life on nearby hosted planets. Despite the earlier pessimistic view that red dwarfs stars are not suitable for habitable planets - mainly because their low luminosities require a hosted planet to orbit quite close (r <0.3 AU) to be sufficiently warm to support life. Our initial results indicate that red dwarf stars (in particular the warmer dM stars) can indeed be suitable hosts for habitable planets capable of sustaining life for hundreds of billion years. Some examples of red dwarf stars currently known to host planets are discussed.

EW7hEum8-RQ-thumbnail
Wednesday October 29, 2008
Dr. Hans Zinnecker
Astrophysical Institute Potsdam, Germany

Abstract

In the first (optical) part, we present our recent results on mass and luminosity function of Galactic open clusters, a new statistical study based on the ASCC-2.5 catalogue of bright stars, complete to about 1 kpc around the Sun. This includes a new determination of the fraction of field stars born in open clusters. It also briefly addresses the issue whether all massive stars are exclusively born in clusters. In the second (infrared) part, we discuss the prospects of a 42m European ELT to "see" the origin of massive stars in dense embedded protoclusters, by penetrating dense proto- cluster clouds up to 200 mag of visual extinction at 2-5 microns. High-angular resolution AO imaging as well as 3D integral field spectroscopy are required to study the stellar density, binary content, and dynamical properties of these highly obscured, massive, compact star clusters.

C4CHWEW1NSc-thumbnail
Monday October 27, 2008
Dr. Antonio Marín-Franch
Instituto de Astrofísica de Canarias, Spain

Abstract

Based on observations with the Advanced Camera for Surveys (ACS), I will present accurate relative ages for a sample of 64 Galactic globular clusters. This Hubble Space Telescope (HST) Treasury program has been designed to provide a new large, deep and homogeneous photometric database. Relative ages have been obtained using a main sequence fitting procedure between clusters in the sample. Relative ages are determined with an accuracy from 2% to 7%. It has been proved that derived ages are independent of the assumed theoretical models. The existence of two well defined Galactic globular cluster groups is found. A group of old globular clusters with an age dispersion of 6% and showing no age-metallicity relation, and, on the other hand, a younger group showing a clear age-metallicity relation similar to that found in the globular clusters associated to the Sagittarius dwarf galaxy. Roughly 1/3 of the clusters belong to the younger group. Considering these new results, it is very tempting to suggest a Milky Way's halo formation scenario in which two differentiated phases took place. A very fast collapse, where the old and coeval globular clusters where formed, followed by accretions of Milky Way's satellite galaxies.



Upcoming talks

No talks scheduled for the next days.

Recent Colloquia


Recent Talks