Found 8 talks width keyword galactic abundances

nBbFGfhVS10-thumbnail
Friday May 26, 2023
Universidad Nacional Autonoma de Mexico

Abstract

We present the extended data release of the Calar Alto Legacy Integral Field Area (CALIFA) survey (eDR). It comprises science-grade quality data for 895 galaxies obtained with the PMAS/PPak instrument at the 3.5 m telescope at the Calar Alto Observatory along the last 12 years, using the V500 setup (3700-7500Å, 6Å/FWHM) and the CALIFA observing strategy. It includes galaxies of any morphological type, star-formation stage, a wide range of stellar masses ( ∼10^7-10^12 Msun), at an average redshift of  ∼0.015 (90\% within 0.005 < z <0.05). Primarily selected based on the projected size and apparent magnitude, we demonstrate that it can be volume corrected resulting in a statistically limited but representative sample of the population of galaxies in the nearby Universe. All the data were homogeneously re-reduced, introducing a set of modifications to the previous reduction. The most relevant is the development and implementation of a new cube-reconstruction algorithm that provides an (almost) seeing-limited spatial resolution (FWHM PSF  ∼1.0").  Furthermore we present the analysis performed using the pyPipe3D pipeline for these dataset. We include a description of (i) the analysis performed by the pipeline, (ii) the adopted datamodel for the derived spatially resolved properties and (iii) the catalog of integrated, characteristics and slope of the radial gradients for a set of observational and physical parameters derived for each galaxy. All these data has been distributed through the following webpage: http://ifs.astroscu.unam.mx/CALIFA_WEB/public_html/


DduKmnIhMoo-thumbnail
Tuesday April 11, 2023
University of Florence and INAF-Arcetri - Italy

Abstract

 

The abundance of chemical elements across cosmic time provide unique information on the physical processes driving the evolution of galaxies. Current methods for measuring gas-phase metallicities, based on either direct measurements of electron temperature (Te) or calibrations from strong nebular emission line ratios, are based on simplifying assumptions and do not adequately describe the complexity of the emitting regions. We present a new approach based on fitting galaxy spectra with multi-cloud photoionisation models. Unlike current methods, based on comparisons with single-cloud models, our methodology is able to reproduce all observed emission lines to a very high accuracy, down to a few percent, thus allowing for accurate metallicity measurements. We further recover the well known trends between ionization parameter and metallicity, and between the Nitrogen and Oxygen abundances. Our models accurately reproduce the auroral-to-nebular line ratios, while the results of the standard Tmethod are sometimes very different from the best-fitting model metallity. We finally present newly calibrated metallicity estimators for galaxies based on ratios between strong emission lines.

2QJX4Ot1SPk-thumbnail
Thursday June 13, 2019
IAC

Abstract

Although the name 'fundamental metallicity relation' (FMR) may sound a bit bombastic, it really represents a fundamental relation in the sense of revealing a fundamental process in galaxy formation. Numerical simulations predict that accretion of cosmic web gas feeds star formation in star-forming galaxies. However, this solid theoretical prediction has been extremely elusive to confirm. The FMR, i.e., the fact that galaxies of the same stellar mass but larger star formation rate (SFR) tend to have smaller gas-phase metallicity (Zg), is one of the best observational supports available yet. The talk will introduce the FMR and then present recent results of our group showing how the FMR emerges from a local anti-correlation between SFR and Zg existing in the disks of galaxies. Thus, understanding the FMR is equivalent to understanding why active star-forming regions tend to have low relative metallicity. The existence of the local anti-correlation SFR-vs-Zg is found by Sanchez-Menguiano+19 ApJ  and Sanchez Almeida+18 MNRAS, whereas the equivalence between local and global laws is in Sanchez Almeida & Sanchez-Menguiano 19 ApJL.


iHwk3aA7gdU-thumbnail
Tuesday May 28, 2013

IAA

Abstract

 Chemical abundances derived using emission-line spectra in ionized gaseous nebulae are between the most useful properties that can be derived to understand the evolution of galaxies from the local Universe up to very high redshifts. Since nitrogen is one of the most abundant metals in the gas-phase of galaxies and its emission-lines can be measured many times instead of those emitted by oxygen, it is important to be aware of the implications of the variations in the nitrogen-to-oxygen ratio for the derivation of total metallicity and what are the advantages of using this abundance ratio to derive other evolutionary properties in different emission-line objects. We will also see the utility of some observational techniques, such integral field spectroscopy, to disentangle between different processes implied in the excess of observed nitrogen as derived from integrated observations.


hnj6A7mJpVk-thumbnail
Thursday November 24, 2011
Australian Astronomical Observatory, Australia

Abstract

To understand the formation and evolution of galaxies, it is important to have a full comprehension of the role played by Metallicity, Star Formation Rate (SFR), and stellar mass of galaxies. The interplay of these parameters at different redshifts will substantially affect the evolution of galaxies and, as a consequence, the evolution of these parameters provides important constraints for the galaxy evolution models. We studied the relationships and dependencies between the SFR, stellar mass, and gas metallicity of star forming galaxies from the Sloan Digital Sky Survey-Data Release 7 (SDSS DR7) and Galaxy and Mass Assembly (GAMA) surveys. We have combined both surveys finding evidence of SFR and metallicity evolution for galaxies down to redshift ~0.2. Also, we have proved the existence of a Fundamental Plane in the 3D space formed by the SFR, mass and metallicity for the SDSS and GAMA samples.


VC9Ff7SMe0U-thumbnail
Friday March 25, 2011
University of Central Lancashire, UK

Abstract

Spectroscopic analysis of stellar populations is widely used to understand the history of many systems including globular clusters, nuclear star clusters, dwarf galaxies through to giant galaxies over a wide range of redshifts. In this talk I first explore aspects of stellar population fitting, focussing on the effects of interacting binary stars on the yields and hence the spectra of early-type galaxies. The second part of the talk concentrates on what we know about supernovae type Ia and the importance of understanding their contributions to the chemical evolution of galaxies and stellar populations.


-thumbnail
Thursday July 16, 2009
University of California Observatories, Lick Observatory, USA

Abstract

AEGIS (All-wavelength Extended Groth strip International Survey: aegis.ucolick.org) is on-going survey that opens up new views of the development of galaxies and AGN's at redshifts z about 1. AEGIS is panchromatic like GOODS, with coverage ranging from X-ray to radio, and nearly as deep but more panoramic by covering a 4x larger region. Its backbone is the most Northern (accessible to the GTC) of the four fields of the DEEP2 Keck spectroscopic survey, which provides not only precision redshifts that yield reliable pairs, groups, and environments, but also internal kinematics and chemical abundances. After an overview of the DEEP and AEGIS surveys, I will share some recent highlights, including using a new kinematic measure for distant galaxies to track Tully-Fisher-like evolution; discovering metal poor, massive, luminous galaxies; finding ubiquitous galactic gas outflows among distant star forming galaxies; and exploring the nature of distant x-ray AGNs.

U11lNhJFZaE-thumbnail
Monday November 17, 2008
Swinburne University, Australia

Abstract

In the Λ-CDM galaxy formation paradigm, the star formation history of a galaxy is coupled to the total mass of its dark matter halo through processes like galaxy-galaxy merging, satellite accretion, and gas retention. Globular cluster formation is known to coincide with strong star formation events in the early Universe. To develop an accurate model of galaxy formation, the relationship between such systems and their hosting dark matter halos must be understood. Employing weak gravitational lensing galaxy mass analysis, we have discovered that the number of globular clusters in a given galaxy is directly proportional to its total dark matter halo mass. This result holds in both dwarf and giant ellipticals, spirals and in all types of galaxy environments. I will present these observations and initiate a discussion on the implications for scenarios of globular cluster system formation and evolution.


« Newer Older »

Upcoming talks

No talks scheduled for the next days.

Recent Colloquia


Recent Talks