Found 32 talks width keyword active galaxies

d1uW_aU5XB8-thumbnail
Tuesday March 24, 2015
IFCA

Abstract

Recent works show that the restframe colours of X-ray selected AGN host galaxies at z~1 are no different from those of inactive galaxies once stellar mass selection effects are taken into account. However, there is a clear deficit of AGN among quiescent galaxies, and the average star formation rates of AGN hosts are comparable or higher than those of inactive star-forming galaxies. These apparently contradictory findings could be a consequence of higher extinction in star-forming AGN hosts compensating for their younger stellar populations in observed colours. In this talk I will present a new method of extinction correction that breaks the degeneracy with stellar age and metallicity by comparing the restframe U-V colour with measurements of the Dn(4000) index on intermediate band photospectra from SHARDS. I'll show that the distribution of extinction corrected U-V colours and Dn(4000) for AGN hosts at z<1 is significantly different from that of comparison samples of inactive galaxies, with a clear deficit of AGN in intrinsic red galaxies and a higher prevalence among those with intermediate age stellar populations.


yhzqxVfkVeY-thumbnail
Tuesday December 9, 2014
Laboratorio Nacional de Astrofísica (Itajubá, Brasil)

Abstract

FeII comprises up to one third of the line emission in AGNs. For that reason it is an important coolant that needs to be taken into accountto fully understand the energetics of the broad line region (BLR). In thistalk I will discuss new approaches to study the excitation mechanisms ofthe FeII based on a semi-empirical template we derived in thenear-infrared region (NIR). We correlate the strength of the NIR andoptical iron lines to assess the relative contribution of the differentmechanisms that produces that emission. We found that in all casesLy_alpha fluorescence plays an important role, being a process that needsto be considered in any approach aimed at understanding this complexemission. We also compare the width of the individual FeII lines with thatof other lines emitted in BLR. Our results confirm previous assumptionsand results from variabilty studies that the gas responsible for the FeIIemission is the outer portion of the BLR.


fE9x1a74k6k-thumbnail
Wednesday October 22, 2014
Vienna Univ.

Abstract

In order to understand galaxy formation it is crucial to obtain sensitive observations of the emission of dust and molecular gas both of which constrain the on-going star formation or AGN activity and the future potential of the galaxy to grow. Constraining the growth of ensemble of galaxies in the distant universe and not simply the most active ones, is one of the primary goals of current and planned (sub)mm facilities such as ALMA or SPICA. I will discuss two major questions in galaxy formation and assembly: 1) are dusty galaxies vigorously forming stars embedded within large scale structures at z>1.5; and 2) do dusty starbursts exist at the highest redshift. To shed light on these obscure topics, I will present our on-going observations of dust and molecular gas with a number of different (sub)mm facilities such as Herschel, APEX, IRAM or ALMA of one important star forming galaxy population in the distant universe: submillimeter selected galaxies (SMGs). My presentation will be complemented by our recently initiated census of the molecular gas reservoirs of nearby galaxies with optical IFU coverage. The local analogs serve as a reference sample for current and future studies of high-z galaxy populations.


aJOQfMlP32I-thumbnail
Tuesday July 8, 2014
IAC

Abstract

The active galactic nuclei is conformed by a number of classes. Optically they are defined using diagnostics based on optical emission lines. At X-rays they are classified by the power of the AGN continuum and the shape of the X-ray spectra. Therefore, optical and X-ray classes are independent classifications. However, optical and X-ray classes show many discrepancies not fully understood yet. Some AGN at X-rays do not show any AGN signature at optical wavelengths (called optical elusive). Classical obscured AGN are ’sometimes’ not obscured at X-rays.

We have studied the ‘synapses’ between them using artificial neural networks (Gonzalez-Martin+14). To do so, we used flux-calibrated X-ray spectra of a sample of 90 emission line nuclei (ELN) observed with XMM-Newton. It includes starbursts (SB), transition objects (T2), LINERs (L1.8 and L2), and Seyferts (S1, S1.8, and S2).

The ELN can be classified into six classes, based on the shape of their X-ray spectra. These classes are associated with most of the optical classes. The key parameters to explain them at X-rays are three. The first parameter is an AGN-like component, which is present in all of them (even non-AGN at optical wavelengths!). The second one is obscuration, which almost certainly drives the Type-1/Type-2 dichotomy, but may also explain why L1.8 are more similar to S1s while L2/T2 are more similar to S1.8s. The third component is star-forming activity happening at the host galaxy and contributing at X-rays. The AGN strength, relative to the host-galaxy component, determines the average X-ray spectrum for these classes as follows: S1 -> S1.8 -> L1.8/S2 -> L2/T2/ -> SB.


YlVupIocw8w-thumbnail
Thursday June 26, 2014
University of Sheffield

Abstract

There is increasing speculation that quasars are intimately linked to the evolution of their host galaxies. Not only are they triggered as galaxies build up mass through gas accretion, but they also have the potential to drive massive outflows that can directly affect galaxy evolution by heating the gas and expelling it from galaxy bulges. However, there remain considerable uncertainties about how, when and where quasars are triggered as galaxies evolve, and the true energetic significance for the quasar-induced outflows and their acceleration mechanism have yet to be established. In this talk I will present new Gemini, VLT, Spitzer and Herschel results on samples of luminous AGN in the local Universe which provide key information on the triggering mechanisms for quasars and physics of their outflows.


VYDRxNLMuZQ-thumbnail
Thursday October 10, 2013
IAA

Abstract

The ALHAMBRA (Advance Large Homogeneous Area Medium Band Redshift Astronomical; Moles et al. 2008) survey has observed 8 different regions of the sky, including sections of the COSMOS, DEEP2, ELAIS, GOODS-N, SDSS and Groth fields using a new photometric system with 20 contiguous, ~300A width, filters covering the optical range, plus deep JHKs imaging. The observations, carried out with the Calar Alto 3.5m telescope using the wide field (0.25 deg2 FOV) optical camera LAICA and the NIR instrument Omega-2000, correspond to ~700hrs of on-target science images. The photometric system was specifically designed to maximize the effective depth of the survey in terms of accurate spectral-type and photometric redshift estimation along with the capability of identification of relatively faint emission lines.

The ALHAMBRA Gold catalogue corresponds to a subsample of ~100k bright galaxies (+20.000 stars in the galactic halo and ~1000 AGN candidates), photometrically complete down to magnitude I=23AB, with very accurate and reliable photometric redshift estimations.

Considering that the Spanish community will have privileged access to the data until Nov15th 2013, this seminar is intended to be a brief introduction to the potential (doable) science with the ALHAMBRA-survey.


2QaFzB_UqiA-thumbnail
Tuesday July 30, 2013
Universidad de Concepción

Abstract

It is now clear that supermassive black holes (M>1e6 Msun) live in the center of most (all) galaxies, including our own Milky Way. Furthermore, the energy released during the growth of this black hole is a critical ingredient in understanding galaxy formation and evolution. In this talk, I will show what we know about how, when and where these supermassive black holes are acquiring their masses. In particular, I will focus on the effects of obscuration, as it is now clear that the majority of this black hole growth is hidden from our view by large amounts of gas and dust. I will present statistical evidence suggesting that while most nuclear activity is triggered by internal secular processes, the most violent episodes are linked to major galaxy mergers. Finally, I will show how future data obtained combining observations with the ALMA radio telescope and the NuSTAR X-ray observatory will allow us to understand the physical details of the connection between black hole growth and galaxy evolution.


mom6wpW9j68-thumbnail
Tuesday April 30, 2013
IAC

Abstract

Although there is increasing speculation that the evolution of galaxy bulges may be regulated by AGN-induced outflows associated with the growth of the central supermassive black holes, the importance of AGN-induced outflows relative to those driven by starbursts has yet to be established observationally. In this context we have recently presented a study focusing on AGN-induced outflows in a sample of local Seyftert-ULIRGs. Perhaps, our most interesting result is related to the energy that the AGN returns to the galaxy in the form of feedback. We find that the typical mass outflows rates and kinetic powers of the emission line outflows are, in general, less energetically significant than the neutral and molecular outflows in ULIRGs and moreover, than those required today in the majority of the current hydrodynamic simulations that include AGN feedback. However, the uncertainties in the existing measurements are large, and more accurate estimates of the radii, densities and reddening of the outflows are required to put these results on a firmer footing. In this context, we are using HST /ACS+STIS and VLT-Xhsooter observations to accurately estimate sizes, electron densities and reddening to eventually provide the most accurate estimates of the kinetic powers associated with the ionized gas. In this talk I will describe in detail the results of this study focussing on testing the current simulations of hierarchical galaxy evolution.


zkMYH6WosM4-thumbnail
Thursday November 22, 2012
IAC

Abstract

As astrophysicists, we are used to extracting physical information from the observations. The usual procedure is to propose a parametric physical model to explain the observations and use the observations to infer the values of the parameters. However, in our noisy and ambiguous universe, the solution to the inference problem is usually non-unique or diffuse. For this reason, it is important that our inversion techniques give reliable results. In this talk I present a few recent results (dusty tori of AGN, magnetic fields in central stars of planetary nebulae, oscillations of coronal loops, signal detection) in which our group is applying Bayesian ideas to extract information from the observations.


HeHJTsUPyrA-thumbnail
Thursday May 10, 2012
Gemini Observatory

Abstract

Low-luminosity AGN (LLAGN; LINERs and low-luminosity Seyferts) are present in numerous nearby galaxies and are often suggested to be the "missing link" between bright AGN and "normal", quiescent systems. Their accretion physics appear to differ from those of higher-luminosity AGN, and their place in the AGN unified scheme is not yet clear. Mid-IR observations promise new constraints on the accretion mechanisms and obscuring medium in LLAGN. However, their mid-IR emission remains almost completely unexplored at the high angular resolution needed to separate the weak nucleus from the host galaxy. I will show the results of an exploratory imaging study of ~20 LLAGN using Michelle and T-ReCS on the Gemini telescopes. Combined with Spitzer spectroscopy and high-resolution multi-wavelength information, the data establish, for the first time, the general nuclear IR properties of these objects. There are some hints that the obscuring torus disappears at low AGN luminosities, and we are also able to provide "dust-free" candidates for detailed study of the disk and jets.


<< First 1 | 2 | 3 | 4 Last >>

Upcoming talks

No talks scheduled for the next days.

Recent Colloquia


Recent Talks