Found 28 talks width keyword CMB

LdVQ9tW7tV8-thumbnail
Wednesday March 5, 2014
LPSC, Grenoble

Abstract

Next generation of CMB experiments will require a large number of detectors (few tens of thousands) in order to tackle the challenging detection of primordial polarization B modes. Furthermore, high resolution experiments are needed for a detailed study of high redshift objects including clusters of galaxies, proto-clusters and dusty galaxies. Within this context Kinetic Inductance Detectors (KIDs) are a serious alternative to bolometers at millimetre wavelengths. Indeed, KIDs are naturally multiplexed and compact allowing us to construct arrays of thousands of detectors. Furthermore, KIDs present short time constants (below 1 ms) and have been demonstrated to be background limited on ground based observations. The NIKA camera, made of two matrices (200 KIDs each) operated at 140 and 240 GHz, has been installed successfully at the IRAM 30 m telescope in Pico Veleta, Granada. NIKA has provided the first ever scientific quality astrophysical observations with KIDs. In particular RXJ1347.5-1145, a massive intermediate redshift galaxy cluster at z = 0.4516 undergoing a merging event, has been successfully mapped at 12 arcsec resolution by NIKA. NIKA is a general purpose camera and it can be also used for other astrophysical objectives including for example observations of high redshift galaxies and proto-clusters, and detailed intensity and polarisation mapping of star-forming regions in the Galaxy. NIKA is a prototype of the NIKA2 camera that should be installed in 2015 at the IRAM 30 m telescope. NIKA2 should have 2 frequency bands at 150 and 250 GHz with about 5000 detectors in total and polarisation capabilities. NIKA2 will be well-suited for in-depth studies of the Intra Cluster Medium in intermediate to high redshift clusters and the follow-up of clusters and proto-clusters newly discovered by the Planck satellite. Finally, we discuss the possibility of including KIDs in the next generation of CMB satellites as for example PRISM.


l7MrZCmd2IU-thumbnail
Thursday February 27, 2014
Universidad de Salamanca

Abstract

About half the baryons in the local Universe could be in the form of a Warm Hot Intergalactic Medium (WHIM). If a large fraction of the gas is ionized, it could produce significant temperature anisotropies in the Cosmic Microwave Background (CMB), generated by the thermal and also the kinematic Sunyaev-Zeldovich effect. We have developed a theoretical framework to describe the mildly non-linear regime of the WHIM that allows us to compute its contribution to CMB anisotropies. We discuss prospective ways of detecting the WHIM contribution using our formalism and discuss our results on PLANCK data and the constraints we set on the WHIM parameters.


8ysdNH3CbtY-thumbnail
Thursday February 13, 2014
Carnegie Observatory

Abstract

Twenty years ago, no one convincingly knew the age or the size of the
Universe to within a factor of two. Ten years ago, everyone agreed on
those same two numbers to within 10%. Today, we arguably have brought
the errors down by another factor of two. But that has led to anxiety
rather than euphoria, renewed interest rather than complacency. The
problem is that there are now two independent, competing methods
giving answers of comparable precision and accuracy:
one is a model-based method using the cosmic microwave background
(the CMB), the other is a geometric, parallax-based method using local
measures of distances and expansion velocities. To within about
two-sigma the methods agree.  To within about two-sigma the methods
disagree. And basic physics (a fourth neutrino species, perhaps) hangs
in the balance.

I will discuss how this "tension" arose and how it will soon be
relieved.  A tie-breaker has been identified and developed, and it is
now being worked on from the ground and from space.


oHdoDDqk_L8-thumbnail
Thursday May 2, 2013
IAC

Abstract

1) Overview on Planck and QUIJOTE. R. Rebolo 15 min. 2) The Galaxy as seen by Planck. R. Génova-Santos 15 min. 3) Planck Cosmological Results. J. A. Rubiño-Martín 20 min (times approximate). We will give an overview of two Cosmic Microwave Experiments with a significant involvement of the IAC. The ESA mission Planck has recently released its first set of Cosmological Results. QUIJOTE is a CMB polarization experiment which has recently started scientific operation at Teide Observatory. We will show the first results and the potential of QUIJOTE and we will provide an overview of the Planck mission and its impact on Galactic science and on Cosmology.


6yuj-SV36LQ-thumbnail
Wednesday December 5, 2012
Universidad de Granada

Abstract

Magnetic fields at galactic and larger scales is a challenging issue for astrophysics and cosmology. In this talk, I'll review the methods to detect magnetic fields at these scales as well as I'll revise the field structure of the Milky Way and its dynamical implications over the gas distribution. In the second part, I'll review the updated works about effects of primordial magnetic fields on large scale structure and I'll show you preliminary results on its imprint on cosmic microwave background. 


rOHhniLxT3o-thumbnail
Thursday February 9, 2012
Instituto de Astrofísica de Canarias, Spain

Abstract

The European Space Agency's Planck satellite was launched on 14 May 2009, and has been surveying the sky stably and continuously since 13 August 2009. Its performance is well in line with expectations, and it will continue to gather scientific data until the end of its cryogenic lifetime. I will present the first scientific results of the mission, which appeared as a series of 26 papers at the beginning of this year 2011, covering a variety of astrophysical topics. In particular, I will focus on the results on galactic diffuse emissions, as well as the first results on galaxy clusters detected by means of the Sunyaev-Zeldovich effect.


EU1DoLA8pEs-thumbnail
Thursday December 1, 2011

Abstract

I revisit the claim of Dark Energy detection after stacking CMB data on the angular position of voids and superclusters in Sloan Data. I examine the theoretically expected amplitude for the ISW-induced signal and explore its scale dependence. I next confront these predictions with results obtained from real WMAP data, and evaluate the degree of agreement and the possible presence of contaminants. In a more general context, I address the possibility of unveiling the signature of Dark Energy on the CMB by looking at isolated regions on the sky hosting high-threshold projected under/over-densities: this constitutes a novel approach since it is less sensitive to large angle systematics commonly present in large scale structure surveys.


ZGvsCec6z1A-thumbnail
Wednesday October 26, 2011
Universidad de Granada, Spain

Abstract

In this talk I will review the subject of cosmological inflation, a period of early accelerated expansion. I will discuss Friedmann-Robertson-Walker cosmology and the horizon and flatness problems, and introduce inflation as a solution to those problems. I will also discuss the generation of  the primordial (scalar and tensor) spectrum of perturbations which provides the seeds for the large scale structure in the Universe. I will review quickly the status of observations in relation to the inflationary parameters, and then the implications for model building.


60jj8nMDvXY-thumbnail
Thursday July 21, 2011
Instituto de Astrofísica de Canarias, Spain

Abstract

I will review some theoretical ideas in Cosmology different to the standard "Big Bang": the Quasi-steady State model, Plasma Cosmology model, non-cosmological redshifts, alternatives to non-baryonic dark matter and/or dark energy, and others. Some open problems of Cosmology within the standard model will also be summarized.


FJhRSGkNXQU-thumbnail
Wednesday July 20, 2011
Instituto de Astrofísica de Canarias, Spain

Abstract

What's the dark matter made of? Do we have any idea of the kind of particle that should constitute ~85% of the matter content of the Universe? In this talk, I will briefly explain the properties that such a particle might have and will present some of the proposed candidates that arise from beyond the Standard Model of particle physics. Next stop will be to give an overview of the present status of dark matter searches, mainly focusing on gamma-rays. There is a tremendous effort currently ongoing that involves an impressive battery of experiments both at the lab and observatories around the world.
In a second part,  the importance of N-body cosmological simulations for the understanding of how dark matter halos form and evolve from the early Universe will be discussed. At this point, some problems arise that it's worth mentioning and that will hopefully lead to debate.

<< First 1 | 2 | 3 Last >>

Upcoming talks

No talks scheduled for the next days.

Recent Colloquia


Recent Talks