Found 20 talks width keyword cold dark matter
Abstract
Galaxies and the dark matter halos in which they reside are intrinsically connected. That relationship holds information about key processes in galaxy and structure formation. In this talk, I will consider how the galaxy-halo connection depends on position within the cosmic web - the familiar decomposition of large-scale structure in filaments, knots and voids. Simulations demonstrate the various ways in which the cosmic web modulates the growth and dynamics of halos. The extent to which the cosmic web impacts on galaxies is more difficult to establish. For example, galaxies might be sensitive only to the evolution of the host halo, in which case any effect of the cosmic web on galaxies is secondary, and can be inferred from the halo's history. There is evidence, however - from simulations and observations - that the cosmic web also impacts on the evolution of galaxies via the effect it has on the broader gas ecosystem in which they are embedded, as well as through "pre-processing" effects on group scale. So, how should we think of the cosmic web in its role as a transformative agent of galaxies? And what physical processes can we convincingly constrain from observations and simulations? In this talk I highlight recent work that addresses these questions.
Abstract
I present the recent results obtained using the updated version of MG-MAMPOSSt, a code that constrains modified gravity (MG) models viable at cosmological scales using determination of galaxy cluster mass profiles with kinematics and lensing analyses. I will discuss limitations and future developments of this method in view of upcoming imaging and spectroscopic surveys, as well as the possibilities of including X-ray data to break degeneracy among model parameters. Finally I will show preliminary results about the constraints that can be obtained on the inner slope of dark matter profiles when adding the velocity dispersion of the Brightest Central Galaxy (BCG) in the dataset of MG-MAMPOSSt.
Abstract
lighter than the canonical axion will be discussed. The implications for dark matter, neutron stars and gravitational waves searches will also be addressed.
Abstract
Vimos Public Extragalactic Redshift Survey (VIPERS) is a spectroscopic survey designed to investigate the spatial distribution of ~90k galaxies on redshift 0.4<z<1.2. The catalogue of spectroscopic observations, combined with auxiliary photometric data, is perfect for evolutionary studies of different types of galaxies. But also for tracing rare objects. One of them are the so-called “red nuggets”, progenitors of the most massive galaxies in the local Universe. The discovery of red nuggets - highly massive, passive and extremely compact galaxies - at high redshift challenged the leading cosmological models, as they do not fit into the evolutionary paths of passive galaxies. Taking into account that the galaxies' mergers are stochastic events, it is possible that some red nuggets remain relatively unaltered for billions of years. Those survivors constitute a group of unique galaxies in the local Universe, commonly named “relics”. Despite numerous studies dedicated to red nuggets and relics, the link between the population of compact, massive, passive galaxies in the early Universe and their remnants in the local Universe, is still poorly understood.
In my talk I will present the first spectroscopically selected catalogue of red nuggets at the intermediate redshift. It is the most extensive catalogue of this kind of galaxies above redshift z > 0.5. Selected under the most strict criteria, the group of 77 objects consists of a statistically important sample, which allows for analysis of physical properties of those rare passive giants. I will discuss the influence of compactness criteria on the sample size. Moreover I will present VIPERS red nuggets number densities and discuss the environmental preferences of those exceptional galaxies.
Abstract
Cosmological observations (redshifts, cosmic microwave background radiation, abundance of light elements, formation and evolution of galaxies, large-scale structure) find explanations within the standard Lambda-CDM model, although many times after a number of ad hoc corrections. Nevertheless, the expression ‘crisis in cosmology’ stubbornly reverberates in the scientific literature: the higher the precision with which the standard cosmological model tries to fit the data, the greater the number of tensions that arise. Moreover, there are alternative explanations for most of the observations. Therefore, cosmological hypotheses should be very cautiously proposed and even more cautiously received.
There are also sociological and philosophical arguments to support this scepticism. Only the standard model is considered by most professional cosmologists, while the challenges of the most fundamental ideas of modern cosmology are usually neglected. Funding, research positions, prestige, telescope time, publication in top journals, citations, conferences, and other resources are dedicated almost exclusively to standard cosmology. Moreover, religious, philosophical, economic, and political ideologies in a world dominated by anglophone culture also influence the contents of cosmological ideas.
Abstract
Gravitational dynamical friction affecting the orbits of globular clusters (GCs) was studied extensively as a possible formation mechanism for nuclear star clusters in galaxies. In well-known examples that showcase this phenomenon, like the Milky Way and M31 galaxies, the medium which affects the dynamical friction is dominated by bulge stars. In comparison, the case for dynamical friction in dark matter-dominated systems is much less clear. A puzzling example is the Fornax dwarf galaxy, where the observed positions of GCs have long been suspected to pose a challenge for dark matter, dynamical friction theory, or both. We search for additional systems that are dark matter-dominated and contain a rich population of GCs, offering a test of the mechanism. A possible example is the ultra diffuse galaxy NGC5846-UDG1: we show that GC photometry in this galaxy provide evidence for the imprint of dynamical friction, visible via mass segregation. If confirmed by future analyses of more GC-rich UDG systems, these observations could provide a novel perspective on the nature of dark matter.
Abstract
A key problem that we are facing in cosmology nowadays is that we cannot make accurate predictions with our current theoretical models. We have all of the pieces of the standard model but it doesn't have an analytical solution. The only way to have accurate predictions is to run a cosmological simulation. Then, why not use these simulations as the theory model? Well, for one main reason, if we want to explore the full parameter space comprised in the standard model, we need thousands of such simulations, and they are terribly computationally expensive. We wouldn't be able to do it in years! In this talk, I will tell you how in the last few years we have come up with a way to circumvent this problem.
Abstract
Abstract
The next decade will see a deluge of new cosmological data that will enable us to accurately map out the distribution of matter in the local Universe, image billions of stars and galaxies to unprecedented precision, and create high-resolution maps of the Milky Way. Signatures of new physics as well as astrophysical processes of interest may be hiding in these observations, offering significant discovery potential. At the same time, the complexity of astrophysical data provides significant challenges to carrying out these searches using conventional methods. I will describe how overcoming these issues will require a qualitative shift in how we approach modeling and inference in cosmology, bringing together several recent advances in machine learning and simulation-based (or likelihood-free) inference. I will ground the talk through examples of proposed analyses that use machine learning-enabled simulation-based inference with an aim to uncover the identity of dark matter, while at the same time emphasizing the generality of these techniques to a broad range of problems in astrophysics, cosmology, and beyond.
https://rediris.zoom.us/j/83193959785?pwd=TExXSDJ6UDg5a24yWDM1TnlOWkNTZz09
Meeting ID: 831 9395 9785
Passcode: 343950O
YouTube: https://youtu.be/1Nkzn-cGaIo
Abstract
We introduce the strong CP problem and the existence of the Axion as a possible solution.
We discuss the possibility that axions are the dark matter of the Universe and the possible ways to
detect it or disprove it using: direct laboratory experiments as well as astrophysical and cosmological
« Newer 1 | 2 Older » Last >>
Próximas charlas
No talks scheduled for the next days.