Breaking News
(1) The effect of magnetic fields on solar abundance determinations (2) The solar photosphere in 3D. This time from observations
Resumen
(1) In a recently published differential analysis (see Fabbian et al) we have derived abundance corrections for iron lines, using synthetic spectra from solar magneto-convection simulations that were performed via running the Copenhagen stagger-code on massively-parallel clusters. The series of 3D snapshots used for the spectral synthesis covers 2.5 solar hours in the statistically stationary regime of the convection. Crucially, we show that the effect of magnetic fields on solar abundance determinations cannot be neglected. This is equally valid for all three different Fe abundance indicators which we have studied, though the sign of the abundance correction changes depending on the interplay of the magnetic-sensitivity of the spectral line under consideration and of temperature structure variations.
Interestingly, for two of the abundance indicators (respectively, at 608.27nm and 624.07 nm) that were used in Asplund et al's analysis and that we also included in our investigation, the presence of a magnetic field has a predominantly indirect (i.e., due to temperature changes between MHD and HD models) effect, leading to positive abundance corrections (since the final equivalent width of those Fe I lines is found to decrease with increasing magnetic flux). The direct magnetic effect due to Zeeman broadening dominates instead for the 1564.85 nm absorption line, causing for it increasingly negative abundance corrections when making the initially implanted magnetic flux larger.
(2) A new three-dimensional model of the solar photosphere is presented in this paper and made publicly available to the community. This model has the peculiarity that it has been obtained by inverting spectro-polarimetric observations, rather than from numerical radiation hydrodynamical simulations. The data used here are from the spectro-polarimeter on-board the Hinode satellite, which routinely delivers Stokes I, Q, U and V profiles in the 6302 Å spectral region with excellent quality, stability and spatial resolution (approximately 0.3''). With such spatial resolution, the major granular components are well resolved, which implies that the derived model needs no micro- or macro-turbulence to properly fit the widths of the observed spectral lines. Not only this model fits the observed data used for its construction, but it can also fit previous solar atlas observations satisfactorily.
Sobre la charla
Instituto de Astrofísica de Canarias, Spain
Instituto de Astrofísica de Canarias, Spain
(1) For related article see Fabbian et al. 2010, 724, 1536.
(2) For related article see Asplund et al. 2000, A&A, 359, 729
iCalendar analysis and that we also included in our investigation, the presence of a magnetic field has a predominantly indirect (i.e., due to temperature changes between MHD and HD models) effect, leading to positive abundance corrections (since the final equivalent width of those Fe I lines is found to decrease with increasing magnetic flux). The direct magnetic effect due to Zeeman broadening dominates instead for the 1564.85 nm absorption line, causing for it increasingly negative abundance corrections when making the initially implanted magnetic flux larger.
(2) A new three-dimensional model of the solar photosphere is presented in this paper and made publicly available to the community. This model has the peculiarity that it has been obtained by inverting spectro-polarimetric observations, rather than from numerical radiation hydrodynamical simulations. The data used here are from the spectro-polarimeter on-board the Hinode satellite, which routinely delivers Stokes I, Q, U and V profiles in the 6302 Å spectral region with excellent quality, stability and spatial resolution (approximately 0.3''). With such spatial resolution, the major granular components are well resolved, which implies that the derived model needs no micro- or macro-turbulence to properly fit the widths of the observed spectral lines. Not only this model fits the observed data used for its construction, but it can also fit previous solar atlas observations satisfactorily.&location=&trp=false&ctz=Atlantic/Canary' target='_blank' rel='nofollow' class='btn btn-primary btn-sm text-light' title='Export to Google Calendar'> Google Calendar