Recent Talks

List of all the talks in the archive, sorted by date.


yXfHRjK75Dk-thumbnail
Friday February 24, 2012
Dr. David Sobral
Leiden University, the Netherlands

Abstract

I will present new deep and wide narrow-band surveys undertaken with UKIRT, Subaru and the VLT; a unique combined effort to select large, robust samples of H-alpha (Ha) emitters at z=0.40, 0.84, 1.47 and 2.23 (corresponding to look-back times of 4.2, 7.0, 9.2 and 10.6 Gyrs) in a uniform manner over ~2 sqdeg in the COSMOS and UDS fields. The deep multi-epoch Ha surveys are sensitive to Milky-Way SFRs out to z=2.2 for the first time, while the wide area and the coverage over two independent fields allows to greatly overcome cosmic variance. A total of over 600 sources per epoch are homogeneously selected. Overall, the evolution seen in Ha is in good agreement with the evolution seen using inhomogeneous compilations of other tracers of star formation, such as FIR and UV, jointly pointing towards the bulk of the evolution in the last 11 Gyrs being driven by a strong luminosity/SFR increase from z~0 to z~2.2. Our uniform analysis allows to derive the Ha star formation history of the Universe, for which a simple time-parametrisation is a good approximation for the last 11Gyrs. Both the shape and normalisation of the Ha star formation history are consistent with the measurements of the stellar mass density growth, confirming that our Ha analysis traces the bulk of the formation of stars in the Universe up to z~2.2. We are also exploring the large, multi-epoch and homogeneously selected samples of Ha emitters to conduct detailed morphology, dust, clustering, environment and mass studies which are providing us with a unique view on the evolution of star-forming galaxies and what has been driving it for the past 11 Gyrs.


5g279Sh81UE-thumbnail
Thursday February 16, 2012
Dr. Daniel Eisenstein
SLOAN Digital Sky Survey, CfA Harvard, USA

Abstract

I will discuss how the acoustic oscillations that propagate in the photon-baryon fluid during the first million years of the Universe provide a robust method for measuring the cosmological distance scale. The distance that the sound can travel can be computed to high precision and creates a signature in the late-time clustering of matter that serves as a standard ruler. Galaxy clustering results from the Sloan Digital Sky Survey reveal this feature, giving a geometric distance to a redshift of 0.3 and an accurate measurement of Omega_matter. I will review our recent work on the theory and practice of the acoustic oscillation method and our latest cosmology results from SDSS-II. I will then present SDSS-III, which will use the acoustic method to produce 1% distance measurements in order to map the curvature and expansion history of the Universe and measure the evolution of dark energy.


lXL8NeV70Nw-thumbnail
Tuesday February 14, 2012
Dr. Carsten Weidner
Instituto de Astrofísica de Canarias, Spain

Abstract

Over the past years observations of young and populous star clusters have shown that the stellar initial mass function (IMF) can be conveniently described by a two-part power-law with an exponent alpha2 = 2.3 for stars more massive than about 0.5 Msol and an exponent of alpha1 = 1.3 for less massive stars. A consensus has also emerged that most, if not all, stars form in stellar groups and star clusters, and that the mass function of these can be described as a power-law (the embedded cluster mass function, ECMF) with an exponent beta ~2. These two results imply that the integrated galactic IMF (IGIMF) for early-type stars cannot be a Salpeter power-law, but that they must have a steeper exponent. An application to star-burst galaxies shows that the IGIMF can become top-heavy. This has important consequences for the distribution of stellar remnants and for the chemo-dynamical and photometric evolution of galaxies.


rOHhniLxT3o-thumbnail
Thursday February 9, 2012
Dr. José Alberto Rubiño
Instituto de Astrofísica de Canarias, Spain

Abstract

The European Space Agency's Planck satellite was launched on 14 May 2009, and has been surveying the sky stably and continuously since 13 August 2009. Its performance is well in line with expectations, and it will continue to gather scientific data until the end of its cryogenic lifetime. I will present the first scientific results of the mission, which appeared as a series of 26 papers at the beginning of this year 2011, covering a variety of astrophysical topics. In particular, I will focus on the results on galactic diffuse emissions, as well as the first results on galaxy clusters detected by means of the Sunyaev-Zeldovich effect.


-thumbnail
Tuesday February 7, 2012
Dr. Carlos Allende, Dr. Ismael Pérez Fournon
IAC

Abstract

The IAC started in June 2010 its participation as an institutional member in the current phase of the Sloan Digital Sky Survey (SDSS-III). In the last year there has been plenty of news in all four projects of the survey: BOSS, MARVELS, SEGUE-2 and APOGEE. In this talk we will summarize the main results, give a progress report, describe the next public data release (DR9), and highlight the contributions and involvement at the IAC. SDSS-III will end in 2014, and we will provide a glimpse of what is coming up afterward.


xUs__4hZgYA-thumbnail
Thursday January 26, 2012
Mr. Thomas de Boer
Kapteyn Astronomical Institute Groningen, The Netherlands

Abstract

We present the detailed Star Formation History of the nearby Sculptor and Fornax dwarf spheroidal galaxies, from wide-field photometry of resolved stars, going down to the oldest Main Sequence Turn-Off. The accurately flux calibrated, wide-field Colour-Magnitude Diagrams are used directly in combination with spectroscopic metallicities of individual RGB stars to constrain the ages of different stellar populations, and derive the Star Formation History with particular accuracy.
The detailed Star Formation History shows the star formation at different ages and metallicities, at different positions in the galaxy, and shows that the known metallicity gradients are well matched to an age gradient. The obtained SFH is used to determine accurate age estimates for individual RGB stars, for which spectroscopic abundances (alpha-elements, r- and s-process elements) are known. In this way, we obtain the accurate age-metallicity relation of each galaxy, as well as the temporal evolution of alpha-element abundances.
This allows us to study, for the first time, the timescale of chemical evolution in these two dwarf galaxies, and determine an accurate age of the "knee" in the alpha-element distribution. Finally, we compare the timescale of chemical evolution in both dwarf galaxies, and determine whether the chemical abundance patterns seen in galaxies with recent episodes of star formation are a direct continuation of those with only old populations.


-thumbnail
Tuesday January 24, 2012
Dr. Nanda Rea
Institut de Ciencies de l'Espai, Spain

Abstract

I will review our current knowledge of soft gamma repeaters (SGR) and anomalous X-ray pulsars (AXP), two peculiar classes of pulsars believed to be 'magnetars', i.e. neutron stars powered by a huge magnetic field. Recent studies of transient events from SGRs and AXPs allowed a large jump in our understanding of these objects, although they also prompted new unanswered questions. In particular, the recent discovery of a low magnetic field magnetar is causing a re-think of some of the basic ingredients of the magnetar model.


I9IOEm7sJcs-thumbnail
Thursday January 19, 2012
Dr. Stan Owocki
Bartol Research Institute, University of Delaware, USA

Abstract

Massive stars lose mass through powerful, radiatively driven stellar winds. Building on the original "CAK" model for steady, spherical winds driven by line-scattering, this talk will review recent research on the multi-faceted nature of such wind mass loss under varied conditions, for example due to rapid rotation, magnetic channeling, binary interaction, or a luminosity near the Eddington limit. An overall theme is that wind mass loss can in this way lead to a wide variety of astrophysical phenomena, including bipolar nebulae, massive star magnetospheres, colliding winds or compact companion accretion, and luminous blue variable eruption. The discussion here will summarize these with an emphasis on their varied observational signatures.


RkfQlaMqRG8-thumbnail
Thursday January 12, 2012
Dr. Javier Alonso-García
Universidad Pontificia de Chile, Chile

Abstract

A serious limitation in the study of the Galactic inner halo and bulge globular clusters has been the existence of large and differential extinction by foreground dust. We have mapped the differential extinction and removed its effects, using a new dereddening technique, in a sample of 25 clusters in the direction of the inner Galaxy, observed in the optical using the Magellan 6.5m telescope and the Hubble Space Telescope. We have also observed a sample of 33 inner Galactic globular clusters in the framework of the VVV survey that is currently being conducted with the new Vista 4m telescope, in infrared bands where the extinction is highly reduced. Using these observations we have produced high quality color-magnitude diagrams of these poorly studied clusters that allow us to determine these clusters relative ages, distances and chemistry more accurately and to address important questions about the formation and the evolution of the inner Galaxy.


wXxW7e5m6SI-thumbnail
Tuesday December 20, 2011
Dr. Nancy Elías de la Rosa
IEEC, Spain

Abstract

Supernovae are at the heart of some of the most important problems of modern astronomy. To fully understand their importance and to enable their use as probes of stellar evolution throughout cosmic time, it is
absolutely essential to determine their stellar origins, i.e., their progenitors or progenitor systems. Even with over 5600 known SNe, we have only direct information about the progenitor star for a handful of explosions. Based on the statistics of 20 SNe II-P for which progenitors have been isolated or upper mass limits established, it has been derived a
more limited range of 8-17 solar masses for these stars, and it appears that all of these progenitors exploded in the RSG phase, as we would theoretically expect. However there has been no detection of a higher mass stars in the range 20-40 solar masses, which should be the most luminous and brightest stars in these galaxies. Therefore, I will present here the
results of our group in the analysis of Hubble Space Telescope (HST) and deep ground-based images, isolating the massive progenitor stars of several recent core-collapse supernovae.



Upcoming talks

No talks scheduled for the next days.

Recent Colloquia


Recent Talks