Recent Talks

List of all the talks in the archive, sorted by date.


F_HLFRkXD4M-thumbnail
Thursday June 7, 2012
Dr. Juan Uson
observatoire de Paris - LERMA

Abstract

Superthin galaxies are bulgeless, late-type spiral galaxies seen edge-on.  HI synthesis observations probe the kinematic structure of their interstellar medium.  Observations of these isolated, quiescent galaxies have reached column densities as low as few x 1018  atoms . cm-2 .  The simple structure of the superthins makes them ideal cosmological laboratories (Uson and Matthews 2003). The strength of the cosmic UV background has a strong influence on the formation of structure in the Universe, from the inhibition of the collapse of small haloes to the ionizing escape fraction in galaxies to the global star formation history.  We have used the VIRUS-P integral-field spectrometer on the University of Texas McDonald Observatory 2.7m telescope to observe the edge of the superthin galaxies UGC7321 and UGC1281 in the Hα emission line, limiting the strength of the local UV background below theoretical expectations (Adams et al., 2011).  New,  observations (March 2011) have improved the sensitivity significantly.  The Hα layer shows a peak brightness of  Σ = 1.0 x 10-19 erg s-1 cm-2 arcsec-2 Å-1 (~7σ)  for spectra smoothed with a 15″ spatial kernel.  This leads to a measurement of the cosmic UV background induced HI photoionization rate Γ = 2.0 x 10-14 s-1 (~7σ, preliminary absolute calibration, Uson et al, BAAS 44, 312-01, 2012).  Contrary to past observational attempts, our measurements covered a large, two-dimensional on-sky area. We reach flux limits that are ~50 times fainter than the sky background with significant smoothing over spatial elements and a sky background model that accounts for variations in the spectral resolution of our instrument.

xkoLU7nF_FU-thumbnail
Tuesday May 29, 2012
Dr. Sebastián Ramírez Alegría
Instituto de Astrofísica de Canarias, Spain

Abstract

I am going to present the new massive and obscured cluster Masgomas-1. This cluster, discovered by our group formed by astronomers from the IAC and CEFCA, is the
first candidate derived from the preliminary version of our systematic search algorithm for obscured (and young) massive clusters, and part of the MASGOMAS project  (MAssive Stars in Galactic Obscured MAssive clusterS). In this talk I will present the spectrophotometric observations obtained with LIRIS at William Herschel Telescope (ORM), which allowed the physical characterization of the massive stellar population of Masgomas-1, and the confirmation of the  cluster's massive nature
(i.e. Mcl > 10^4 Msun).


-thumbnail
Thursday May 24, 2012
Dr. Miguel Urbaneja
Institute for Astronomy, University of Hawaii

Abstract

Measuring distances to galaxies and determining their chemical compositions are two fundamental activities in modern extragalactic astronomy, in that they help characterizing the physical properties of their constituents and their evolutionary status. Ultimately, these measurements lead to stronger constraints on the cosmological parameters of an expanding universe and the history of cosmic chemical enrichment. Both these questions can be tackled afresh with the quantitative analysis of the absorption line spectra of individual massive and luminous, young B- and A-type supergiant stars. A spectroscopic distance determination method, the FGLR, can yield accurate distances up to several Mpc, extending to a local volume where the results can be compared with those obtained from Cepheids and other distance indicators. Moreover, and this being a unique advantage of the FGLR, reddening values and metallicities are simultaneously determined for each individual stellar target. These stellar metallicities are very accurate and can be used to constrain the formation and evolution of galaxies and to assess and overcome the systematic uncertainties of H II region strong-line abundances through a galaxy-by-galaxy comparison. Moreover, stellar spectroscopy provides fundamental complementary abundance information for star forming galaxies on additional atomic species such as iron-group elements. I will present recent results of our on-going efforts to study individual blue supergiant stars in galaxies within and beyond the Local Group based on medium and low resolution optical spectra collected with ESO VLT and the Keck telescopes. The promising perspectives of future work, based on the giant ground-based telescopes of the next generation (E-ELT, TMT) are also discussed.


-thumbnail
Thursday May 17, 2012
Mr. Yuri Cavecchi
Universiteit van Amsterdam

Abstract

I will review what we know about Type I Bursts (thermonuclear explosions on the surface of accreting Neutron Stars) and burst oscillations (fluctuations in the intensity of the burst lightcurves). I will describe the known problems in burst oscillation models and the various solutions that have been proposed. I will report recent progress made in the case of the pulsar IGR J17480-2446 in the Globular Cluster Terzan 5, where we were able to pin point the most likely mechanism responsible for the oscillations. I will explain whether this might be applicable to the other bursters and discuss future perspectives including current efforts to develop magneto-hydrodynamical simulations of the bursting process.


GxrWLovRRBI-thumbnail
Tuesday May 15, 2012
Dr. Rubén Sánchez Janssen
European Southern Observatory

Abstract

I will address the effects of bar-driven secular evolution in discs by comparing their properties in a sample of nearly 700 barred and unbarred massive galaxies. Through detailed structural decompositions I will show that, as a population, barred discs tend to have fainter central surface brightness and larger disc scale lengths than those of unbarred galaxies. Bars rarely occur in high-surface brightness discs and tend to reside in moderately blue discs. These results show that bars induce noticeable evolution in the structural properties of galaxy discs, in qualitative agreement with longstanding theoretical expectations.


HeHJTsUPyrA-thumbnail
Thursday May 10, 2012
Dr. Rachel Mason
Gemini Observatory

Abstract

Low-luminosity AGN (LLAGN; LINERs and low-luminosity Seyferts) are present in numerous nearby galaxies and are often suggested to be the "missing link" between bright AGN and "normal", quiescent systems. Their accretion physics appear to differ from those of higher-luminosity AGN, and their place in the AGN unified scheme is not yet clear. Mid-IR observations promise new constraints on the accretion mechanisms and obscuring medium in LLAGN. However, their mid-IR emission remains almost completely unexplored at the high angular resolution needed to separate the weak nucleus from the host galaxy. I will show the results of an exploratory imaging study of ~20 LLAGN using Michelle and T-ReCS on the Gemini telescopes. Combined with Spitzer spectroscopy and high-resolution multi-wavelength information, the data establish, for the first time, the general nuclear IR properties of these objects. There are some hints that the obscuring torus disappears at low AGN luminosities, and we are also able to provide "dust-free" candidates for detailed study of the disk and jets.


sLmbuUKadRo-thumbnail
Thursday May 3, 2012
Dr. Valentín Martínez Pillet
IAC

Abstract

Solar Orbiter is the first mission of the ESA Cosmic Vision program and that has recently been approved at implementation level. It is an M class mission with a predicted launch in 2017. Solar Orbiter will approach the Sun to a distance of 0.28 AU and perform coordinated in-situ and remote sensing observations of the Heliosphere and the Sun. It's main scientific goal is to understand the link between physical processes at the solar surface and their impact in the inner Heliosphere. A series of gravity assist manoeuvres with Venus will kick the mission out of the ecliptic plane until it reaches an angle of 35 degrees. From this vantage point, we will observe for the first time the Solar Poles without suffering from strong projection effects. These observations can help us understand key physical ingredients of the solar dynamos such as the meridional flow and the polar field reversal. Solar Orbiter includes ESA and NASA participation and it is the first time a space mission has two instruments where Spain participates at PI level. In particular IAC/INTA is co-PI of the Polarimetric and Helioseismic Imager, a magnetograph to image the solar surface magnetic field.


-thumbnail
Thursday April 26, 2012
Prof. Luis C. Ho
The Observatories of the Carnegie Institution for Science, USA

Abstract

Supermassive black holes are ubiquitous in galaxies and play a fundamental role in their life cycle. I will review observational progress in defining and refining the various empirical scaling relations between black hole masses and host galaxy properties. I will emphasize ways in which the intrinsic scatter of the scaling relations can be quantified, and present evidence that the scatter correlates with physical properties. I will describe how the scaling relations can be extended to active galaxies and summarize preliminary efforts to probe the evolution of these scaling relations with redshift. I will present new measurements of the cold ISM content in AGN host galaxies and constraints they place on currently popular models of AGN feedback. Lastly, I will discuss a new class of low-mass black holes in bulgeless and dwarf galaxies that serve as local analogs of seed supermassive black holes.


Hc7umyWEVV0-thumbnail
Tuesday April 24, 2012
Dr. Thomas Eversberg
Deutsches Zentrum für Luft- und Raumfahrt, Bonn

Abstract

Golden Age of Astronomy” does not only influence professional but also amateur astronomy. Today, amateurs basically use the same technologies as the professionals. This includes the most important tool – spectroscopy. There is an important gap in professional astronomical spectroscopy which can be filled by amateurs and their smaller telescopes. Some stellar phenomena need longer time coverage, of order, e.g., some weeks. This is especially valid for binary stars. One such interesting target is Wolf-Rayet 140, a WR+O binary with a highly eccentric orbit and a period of about 8 years. The observation of its periastron passage in the visible wavelength range is valuable for measurements in other wavelength domains to understand the wind-wind shock interaction of both components and the global geometry and physics of the system. For this and some other massive star targets, a group of amateur and professional astronomers performed a successful campaign for 116 nights at the 50 cm Mons telescope at Teide observatory, supported by the IAC and embedded in a joint worldwide X-ray, visual and IR campaign. The group of observers was a mix of enthusiastic astronomers from various professions (e.g., physicists, a physics student, a chemist, a physician, a schoolboy, a pilot) but they all have been experienced and enthusiastic observers. The talk will highlight the most important results of this campaign


HJ2-u6Efea0-thumbnail
Thursday April 19, 2012
Dr. Carlos González Fernández
Universidad de Alicante, Spain

Abstract

Abstract: The study of the structure of our Galaxy, particularly its inner disc, has always been hindered by two factors: interstellar extinction dims even the brightest stars at optical wavelengths and the high source density prevents us, as the proverbial trees, to see the big galactic picture. 

With this talk we give a broad introduction of the historical efforts to alleviate these issues in the neverending quest to dig deeper into the Milky Way, followed by a overview of the first results obtained by the VVV-Vista survey, that maps the southern Galactic sky with unprecedent depth and resolution.


Upcoming talks

No talks scheduled for the next days.

Recent Colloquia


Recent Talks